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The behavior of the axial next-nearest-neighbor Ising (ANNNI) model in an 
external magnetic field is investigated using a low-temperature expansion of the 
free energy. Unusual cascades of phase transitions and "complete devil's stair- 
cases," unexpected for the ANNNI  model, are found. 
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1. INTRODUCTION 

Four years ago Bak and von Boehm (1) suggested the ANNNI  model as a 
candidate for an interpretation of the numerous spatially modulated mag- 
netic structures of CeSb. The numerical analysis of the relevant mean-field 
equations at low temperatures revealed a similarity between the sequence of 
phases predicted by the ANNNI  model and that observed experimentally. 
Recent experimental data on CeSb (2-6) can be understood well in the 
framework of the ANNNI  model. (1'7 11) This substance consists of ferro- 
magnetic layers of spins with an easy axis normal to the layers. At low 
enough temperatures, magnetic moments of whole layers display the 
periodic structure " u p - u p - d o w n - d o w n "  along an easy axis. If an external 
magnetic field or the temperature changes, the magnetic structure turns 
into other modifications through first-order phase transitions. 

However, some of the experimental data do not fit the framework of 
the conventional ANNNI  model. The origin of this discrepancy is due to 
an oversimplified approximation of the real system by the Ising model. A 
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general Hamiltonian must include in this case the competition of the 
magnetic and paramagnetic states of layers. 

The ANNNI model is attractive to theorists since it is the simplest one 
with nontrivial competitive behavior. Now the phase diagram of the three- 
dimensional (3D) ANNNI model is known to exhibit cascades of phase 
transitions of the first order (see the aforementioned papers and Refs. 12 
and 13). Note that on the analogous diagram of the 2D ANNNI model the 
infinite discrete sets of commensurate phases existing in the 3D model are 
replaced by floating phases. (14'15) 

In the present work we investigate the phase diagram of the 3D 
ANNNI model in an external magnetic field emphasizing the topological 
structure of the phase diagram and using for this a low-temperature 
expansion for the free energy. This analytic method has been applied by 
Fisher and Selke (8'9) to describe the phase diagram of the ANNNI model in 
the vicinity of the competition point at low temperatures and in zero 
magnetic field. Their systematic analysis demonstrated an infinite number 
of spatially modulated phases with periodicities 2j + 1 for all integerj's. A 
detailed analysis of the 3D ANNNI model in an external magnetic field 
has been carried by Pokrovsky and Uimin. (1~ They assumed a strong 
anisotropy of intra- and interlayer couplings. This condition, which is not 
invoked in the present paper, makes it possible to apply a high-temperature 
expansion of the free energy with respect to interlayer couplings over a 
wide region of existence of the ordered phases. The phase diagram pattern 
found in the framework of two above-mentioned approaches are topologi- 
cally identical in zero magnetic field. In a finite field the cascades of phase 
transitions become more complicated (cf. Refs. 10, 11 and 8, 9). A low- 
temperature expansion of the free energy versus a high-temperature expan- 
sion makes it possible to investigate the phase diagram in a wider region of 
coupling constants. In the present paper the so-called "complete devil's 
staircases," unexpected for the ANNNI model, are found in a form of 
asymptotic expansions. 

The phase diagram of the "ANNNI + field" model without the as- 
sumption of a strong anisotropy of couplings has been partly found in Refs. 
12 and 13. The construction of the phase diagram between the limiting A F  
and ~2.T) states (~2) and between F and (2.2) states (~3) has been described. 
The splitting of the last boundary, however, is found to be more compli- 
cated than described by Smith and Yeomans. (13) They did not pay atten- 
tion to the existence of nontrivial excitations above the degenerate ground 
state. For example, in the first order of the free energy expansion double- 
spin flips can be most favored (see Section 7.1 for a detailed consideration). 

In the next section we construct the phase diagram of the "ANNNI + 
field" model at T-- 0. Also Section 2 can be considered as an introduction 
to the linear programming method used throughout this paper. General 
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features of a low-temperature expansion of the free energy in systems with 
competing interactions are discussed in Section 3. In Sections 4.1-4.3 the 
pattern of the boundary F - (2 .1 )  splitting is obtained. The existence of the 
infinite cascades of phase transitions and several "complete devil's stair- 
cases" are demonstrated in Sections 5.1-5.2, 6.1-6.2, 7.1-7.3. 

2. PHASE DIAGRAM OF THE GROUND STATE 

The Hamiltonian of the model considered is 

= - ' / ) - l J o  E Or,lOr',l q- �89 E(J lOr,  lOr,l+l + J2Or,lOr, l+2) -- h E ~  (]) 
/,r,r' l,r l,r 

where Orj is the Ising spin (o = 1) in layer l at site (r,l). It interacts 
ferromagnetically with its v nearest neighbors or,,l of the same layer. We 
suppose also the coordination number of the lattice is equal to v + 2. 

There exist several approaches to construction of the phase diagram at 
zero temperature. Here we employ the so-called linear programming 
method. This choice is not an accidental one, because this method will be 
applied throughout the calculations of the present work. 

Since J0 is positive, the ground state of N l spins of a layer is specified 
by the ferromagnetic spin orientation "up" or "down" (+  or - ) .  The 
ground-state energy, i.e., the interlayer part of it, can be written as 

E/N,= - h ( U ( + ) -  U(-)) 

+ 0 . 5 J l ( U ( +  + )  + N ( -  - )  - U ( +  - )  - U ( -  + ) )  

+ 0.5J2(S ( +  + + )  + N ( +  + + )  + U ( -  + - )  + X ( -  - - 

- U ( +  + - )  - U ( +  - - )  - U ( -  + + )  - ( U -  - 

) 
+)) 

(2) 
where N ( + )  [ N ( - ) ]  denotes the total number of layers with a positive 
(negative) magnetization; N(ol, o2) is the total number of pairs of adjacent 
layers with magnetizations per site being equal to o I and a 2, etc. Dividing 
this number by the total number of layers N o defines the corresponding 
probabilities of magnetic configurations. A convenient notation for proba- 
bilities is ( +  . . . .  + �9 �9 �9 ), for instance, (+  - + )  = N ( +  - +)/N o. An 
integer D is the cardinality of a probability space (Crl, o 2 . . . . .  aD). The 
energy (2) depends on probabilities for D < 3. They cannot be varied 
independently. A convenient reduced set of independent probabilities can 
be selected as 

( + + ) = P ,  ( - - ) =  Q (D=2) 
(3) 

( + + + ) = e ,  ( - - - ) = q  ( D = 3 )  

The other probabilities (D < 3) can be calculated using the obvious sum 
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rules: 

( + + - ) = ( - + + )  
( - - + ) = ( + - - )  

( + - ) = ( - + ) =  
( + - + ) = ( + - ) -  
( - + - ) = ( - + ) -  

( + ) = ( + - ) +  
( - ) = ( - + ) +  

= ( + + ) - ( + + + ) =  e - p  
= ( - - ) - ( - - - ) =  Q - q  

( 1 - ( + + ) - ( - - ) ) / 2 = ( I - P -  Q)/2 
(+ - - )  = (1 - P -  3Q + 2 q ) / 2  

( - + + ) = ( 1 - O - 3 P + 2 p ) / 2  
( + + ) = ( I + P - Q ) / 2  
( - - ) = ( 1 +  Q- P)/2 

(4) 

Equations (4) imply the following inequalities: 

P>p>O,  Q > q > O  
P+3Q-2q<<. 1, Q + 3 P - 2 p <  1 

and define a convex polytope P4. We need to know vertices of P4 because 
any linear form defined on a convex polytope achieves its extremal value 
on vertices of a polytope. As the energy (2) is a linear function of 
probabilities P, Q, p, and q, its extremal points coincide with the vertices 
(P, p; Q, q): 

(0,0;0,0); (1,1;0,0) and (0,0;1,1); 

(1/3 ,0;0 ,0)  and (0,0; 1/3,0); (1/4,0;  1/4,0) 

A brief calculation shows that these extremal points correspond to the 
periodic structures AF, F, and if, (2.1) and (2..1), (2.2~, respectively. 

Hereafter we denote (A)  the periodic structure with the elementary 
cell A. The symbol (AB) denotes the periodic structure constructed as the 
dimeric sequence of A and B elements. For instance, (2.T) has an elemen- 
tary cell + + - .  The antiferromagnetic structure AF can be represented 
also by the symbol (1.T); the usual ferromagnetic state is denoted bY F. 

The phase diagram of the model at zero temperature and in a positive 
magnetic field is depicted in Fig. 1, where the aforementioned phases are 
shown to be separated by phase boundaries. The ground state along any 
phase boundary is infinitely degenerate. As an example, consider the 
degenerate ground state along the boundary F-(2.2) .  Here the probabili- 
ties of the sequences - - - ,  + - + ,  and - + -  vanish. Hence, this 
situation can be described by introducing one degeneracy parameter, or, 
for brevity, parameter, p, via the relations 

q = 0, O = (1 - p ) /4 ,  P = (1 + 3p)/4 

Along the boundary the ground-state energy cannot depend on p. 
It will be shown that the boundaries presented in Fig. 1 split with the 

formation of sets of intermediate phases. A splitting is specified by the 
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Fig. 1. Phase diagram of the model at T = 0. Equations for the phase boundaries are given in 
the following sections. 

coupling relationship. However, the boundary F-AF is an exception to the 
general rule. There is no splitting along this boundary. In its vicinity the 
probability space contains three nonvanishing probabilities of cardinality 
D = 3, namely, 

(+ + +) =p, ( +  - + )  = ( -  + - )  = (1 -1)) /2  

To pass from the sequence + + +  to + - +  or to - + -  we need to 
include the intermediate sequence + + - .  In our convention the probabil- 
ity of the last sequence vanishes, i.e., the interface energy F-AF does not 
vanish as in the case of a genuine competition. 

3. STRATEGY FOR ATTACKING THE PROBLEM 

To analyze the model described by the Hamiltonian (1), the low- 
temperature expansion of the free energy will be used. For the sake of 
simplicity we suppose the following inequality to hold: 

J0 >> r (5) 

This ensures the convergence of the series of the free energy. 
In the vicinity of some boundary the ground-state energy is a function 

of a degeneracy parameter.  Excitations above a ground state are asso- 
ciated with spin-flips, which can be divided into two groups. These are 
"connected" and "disconnected" configurations, shown in Fig. 2. The 
energy of the spin-flip at the lattice site (r, l) depends in our model on the 
orientations of the nearest spins in the layer l and of five spins, arranged 
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Fig. 2. Excited states. A flipped spin is denoted by a circle. The spin-flip (a) is "connected," 
while the other two, (b) and (c), are "disconnected." 

along the chain from the site (r, l - 2) to (r, l + 2). Therefore, the cardinality 
of a probability space should be extended from three to five. One might 
expect the increase of the cardinality to generate a new degeneracy parame- 
ter in addition to the basic one, the former and the latter to be denoted by q 
andp.  

To first order of the low-temperature expansion one finds 

f =  e 0 - T~-] wxexp(-  e x / T  ) (6) 
x 

where f is the reduced free energy per spin, % is the energy of the 
degenerate ground state per spin, and the possible five-spin sequence X is 
characterized by its probability w x and by the excitation energy, caused by 
the spin-flip in the middle of this sequence. 

As mentioned before, c 0 is a linear function of p: 

% = ~p (7) 

where ~ is a deviation from some boundary and may be computed from Eq. 
(2). The equation 

~ = 0  

defines the position of that boundary in Fig. 1. It is convenient to rearrange 
(6), absorbing p-dependent components of wa into the ground-state energy 
( 0. This only shifts the boundary slightly renormalizing ~ by terms of the 
order of T w  o, where w 0 = e x p ( - 2 J o / T ) < <  1 in view of inequality (5). The 
new parameter q plays a more significant role. In addition to two compet- 
ing vertices, defined by p, the parameter q generates new vertices. In the 
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vicinity of the boundary a new state may have the lowest free energy. It 
leads to a splitting of the ground boundary. If this happens a new basic 
parameter p'  can be introduced instead of p along a new boundary. 
Otherwise, the boundary remains stable against the higher orders of low- 
temperature expansion, because the energy gap between original and new 
phases is of the order of Tw o. Higher-order terms of a series for the free 
energy include higher powers of w 0 and practically do not change this gap. 

One extra situation is worth explaining. Sometimes the first-order 
terms of the low-temperature expansion do not generate a new parameter, 
leading instead to a small shift of the corresponding boundary. But in the 
next orders a new parameter may still be generated. 

Higher orders of the low-temperature expansion correspond to mul- 
tispin flips. By the "linked-cluster theorem" (see Refs. 16 and 9), one 
should take into account all "connected" configurations of flipped spins 
and select that contribution of "disconnected" configurations into the 
free-energy expansion which is proportional to N. 

Most of the important features like the stability of the boundary, the 
pattern of the boundary splitting into a set of striped intermediate phases, 
and the widths of these phases on the phase diagram, can be found by 
restricting ourselves to the most significant in-chain "connected" spin-flips 
only. More detailed considerations are needed only to obtain the exact 
shape of the boundary lines. 

To outline our convention of a choice of leading spin-flips we com- 
pare the statistical weights of two configurations (a and b) of flipped spins. 
They consist of the same "connected" configuration of spin-flips along a 
chain. But an extra in-layer "linked" bond is contained in the configuration 
a. The degeneracy parameters coincide, but the Boltzmann factor of the a 
differs from that of b by a factor exp[-2(1 - v - l ) J o / T ]  << 1. Therefore, 
the contribution of a can be neglected. In addition, only in-chain spin-flips 
can produce new degeneracy parameters in the vicinities of the phase 
boundaries considered; conversely any "disconnected configuration" can- 
not generate new parameters. 

Henceforth, in accordance with our convention we shall select only 
"connected" configurations of flipped spins to pick up essential ones 
among them. This program will be carried out below. 

4. THE BOUNDARY F-(2 .1)  

4.1. Low-Order Expansion 

The ground-state equation of this line has a form: 

J1 q" J2 = h (Jl ~" O, J2 > O) 
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A convenient choice of the basic parameter is as follows: 

p = ( + + + )  

There exist three more nonzero probabilities (D = 3): 

(+ + - )  = (+ - +) = ( -  + +) = (1 - p ) / 3  

The ground-state energy (2) can be represented in the vicinity of this 
boundary by the equations [cf. Eq. (7)] 

f=~p, ~=2 j h) 3( 1 + J 2 -  (8) 

There are two favored single-spin-flips with a vanishing in-chain part of 
the excitation energy. 

If we denote the flipped spin by a circle, they can be depicted as 
+ + @ + +  and + + O + + .  Here the relevant surroundings are also 
shown. The probability of the latter configuration is given by a simple 
relation 

(+ + - + +)  = ( -  + +)  = (1 - p ) / 3  

which depends on p only. The first configuration generates new parameters. 
In this case the probability space (D = 5) implies the following additional 
parameters: 

q = ( + + + + )  and r = ( + + + + + )  

The remaining probabilities for D = 4 and D = 5 can be written as certain 
linear combinations of p, q, and r. The corresponding polytope is specified 
by the following inequalities: 

p>>q>~r)O, p - 2 q + r ) O ,  4 p - 3 q <  1 (9) 

The first of inequalities (9) is obvious. The others are based on the set of 
equalities 

( -  + + + - ) = ( + + + - ) - ( + + + + - )  

= ( + + + ) - ( + + + + ) - ( + +  + + ) + ( + + + + + )  

=p-2q+r>>O 
( + -  + + - )  = ( -  + + - ) = ( +  + - ) - ( +  + + - )  

= ( + + - ) - ( + + + ) + ( + + + + )  

= (1 - 4p + 3q) /3  >/0 

The vertices (p, q, r) of the polytope and the periodic structures correspond- 
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ing to them can easily be calculated: 

(1, 1, 1) F 

(o,o,o) (2.b 
(1 /4 ,0 ,0)  (3 . i )  

(2/5,  1/5,0)  <4.i) 

In first order of the low-temperature expansion the contributions of the 
leading spin-flips + + @ + + and + + O + + result in the following ex- 
pression of the free energy: 

f =  @ - Twor (10) 

where w o = e x p ( - 2 J o / T )  is the Boltzmann factor of these spin-flips. The 
deviation ~ from the boundary in Eq. (10) differs from that in Eq. (8) by a 
small term of the order of Tw o. It is a consequence of the configuration 
+ + 0 + + .  

Minimization of the reduced free energy (10) is illustrated in Fig. 3. To 
this order the boundary F - (2 .1 )  is stable, so that the extra extremal phases 
(3.T) and (4.T) cannot compete with the original ones. 

Near the point C (see Fig. 1) this conclusion does not hold. If the 
coupling J~ becomes of the order of T, the new single-spin-flips 

+ + G - +  and + - 0 + +  (11) 

begin to compete with the previous configurations. A convenient param- 

~ <4. 7> 
i <3~7> 

<2.T  "f 

Fig. 3. Free energy (10) as a function of ~. Four different lines correspond to four relevant 
vertices (p, q, r). 
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etrization of the boundary in the vicinity of the point C is 

J1 = j "  T, Ja = h - j "  T 

The Boltzmann factors of the excitations (11) are defined by the equation 

Z = exp( - 2j) 

and the probabilities of the spin-flips (11) are connected with the addi- 
tional parameter q via 

( + - + + + ) =  

Now the reduced free energy 

( + + + - + ) = ( + + + - )  
( + + + ) - ( + + + + ) = p -  q 

takes a form 

f =  (p - T w o ( - 2 q z  + r) (12) 

To determine what kind of phases can survive we mast compare magni- 
tudes of the free energy (12) at the vertices. Such an analysis leads to the 
following conclusions: 

1. There is no splitting at z < 1/2 (or j  >�89 
2. The intermediate phase (3.1) appears in between F <2.1), if 

z > 1/2. The phase (4.1) is energetically unfavorable elsewhere; therefore 
the phase transition F-(3 .1)  in the sequence F-<3.1)-<2.T) will be stable 
against higher orders of the low-temperature expansion. 

4.2. The Boundary F-<2.1> (Continued) 

Here we consider the stability of the new boundary <2.1)-~3.1) 
produced by the original boundary F-<2.1). 

Generally, in a vicinity of any new boundary new values of a basic 
parameter p', additional parameters q', r', . . . .  and deviations 4' from a 
boundary must be introduced instead of the original values p, q, r, and 4. It 
is convenient not to proliferate notation and to retain the old one. 

Two in-chain spin-flips generate the new extended probability space 
(D = 7). The probabilities, depending on the additional parameter, are 

( + + + - + + + ) =  

( + + + - + + - ) =  

( - + + - + + - ) =  

The basic parameter is defined 
two-spin-flips is 

+ + ~ - ~ + + ,  

q 

( - + + - + + + ) = p - q  (13) 
( - + + - ) - ( - + + - + + + )  

(1 - vp + 3 q ) / 3  

by p = (+  + +). The set of the significant 

+ + G - G + - ,  and - + 0 - 0 + -  
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with respective in-chain contributions to the excitation energy Ach = 2h, 4h, 
and 6h. Therefore, the free energy can be written as 

f =  ~p - Tw2owh(1 - wh)2q (14) 

where w h = e x p ( -  2 h / T ) .  
The competitive vertices (p, q) can easily be derived from Eqs. (13) as 

(0,0) (25) 
(1/4,1/4) (3J) 
(1/7,0) (3.1.2.1) 

The second term on the right-hand side of Eq. (14) is negative, thus making 
the intermediate phase (3.1.2.1) energetically unfavorable. 

Our conclusion holds at h < J0. If h > J0, then the Boltzmann factors 
of the previous two-spin-flips are much smaller than those of the following 
three-spin-flips 

- 0 + 0 + ( 9 -  and + + @ G + @ -  

whose in-chain contributions to the excitation energy are Ach = 4 j .  T and 
2./'. T, respectively. The corresponding free energy can be written as 

f =  @ + Tw3(2 - z)zq (15) 

In contrast to Eq. (14) the second term on the right-hand side of Eq. (15) is 
positive. Hence, the intermediate phase appears in between the phases 
(3.7) and (2.T), i.e., 

( 2 .1 ) - (2 .1 .3 .1 ) - (3 . i )  

A comparison of Eqs. (14) and (15) demonstrates an important feature 
of the free energy expansion. A term, depending linearly on the additional 
parameter, may be either positive or negative depending on whether the 
significant probabilities are "diagonal" or "off-diagonal." For example, any 
degenerate state along the boundary (2 .1) - (3 .1)  can be constructed as an 
arbitrary sequence of the "particles" A = + + - and B = + + + - ,  like 
. . .  A n~Bm,An2Bm2 . . . .  2 The concentration of "particles" A and B are 

connected with the basic parameter linearly. An extension of the probabil- 
ity space by introducing the following probabilities: (BB), (BA), (A B), and 
(AA), leads simultaneously to the appearence of an additional parameter q. 
Hereafter we use the compact form of (13). Of these probabilities two, (AA) 
and (BB), may be called "diagonal." They yield the main negative contri- 

2 We add the Appendix, where all abbreviations of spin sequences and configurations of 
flipped spins are listed for easy rapid reference. 
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Fig. 4. Two possibilities concerning the splitting of the boundary (A)-(B): (a) The case of 
a positive q term: the free energy of the intermediate phase (AB) is higher than that of either 
of the phases (A) and (B). (b) The reverse possibility: there exists a stability region of the 
phase (A B ). 

bution to the q term in Eq. (14). Conversely, the contribution to the q term 
in Eq. (15) is positive when caused by the "off-diagonal" probabilities ( A B )  

and (BA) .  Figure 4 illustrates these possibilities. 
Furthermore, we shall use this change of sign of the additional degen- 

eracy parameter  term of the free-energy expansion to find the phase 
diagram. 

4.3. The Boundary F-(2.1): Resulting Splitting 

Firstly we show that the boundary (3.1.2.1)-~3.T) (or the boundary 
( B A ) - ( B )  in the notation of Section 4.2) is stable. 

We choose the basic degeneracy parameter  in the following form: 

p = ( B B ) = ( + + + - + + + - ) = ( + + + - + + + )  

Along the boundary in question any degenerate sequence . ~ .  A '~B m' 
A'2Bm2. . .  implies that either all of the n i are 0 or 1. There arises an 



Low-Temperature Analysis of ANNNI Model 13 

additional parameter q defined so that 

( B B B )  = (+ + + - + + + - + + + - )  

= ( + + + - + + + - + + + ) - - q  

( B B A )  = 

( A B B )  = 

( + + + - + + + - + + - ) = / ) - q  

( - + + - + + + - + + + ) = / ) - q  
(16) 

(ABA)  = ( -  + + - + + + - + + - )  = ( 1 -  1 1 / ) + 7 q ) / 7  

To prove the last equation here, we note that (AB)  vanishes in the "pure" 
phase ( B )  and ( A B ) =  1/7 in the phase ( A B ) .  Therefore the linear 
dependence 

(BA)  = ( +  + + - + + - )  = (1 - 4,o)/7 

allows one to obtain the probability (ABA) from the simple equation 

(ABA)  = (BA)  - (BBA)  

In the range of the coupling constants pointed out in Section 4.2 
five-spin-flips are significant: 

Jr -.1- (~ e -t- (~ .Jr (~ (~ ..1_ _~_ (Ach = 0)  

+ +ee+e+e+e } (sch=2j T) (17) 
and _ @ + @ + @ + 0 @ +  

) 

- r 1 6 2  (Aoh=4 j .  T) 

The in-chain excitation energies are quoted m parentheses. 
The main contribution to the free energy expansion 

f =  $p - TWO(1 - z)2q (18) 

is due to the diagonal probabilities (BBB)  and (ABA).  One concludes that 
the boundary ( A B ) - ( B )  is stable. 

The analogous conclusion can be made about the stability of the 
boundary (A n+l B}_(A nB} (n /> 1). The probabilities connected with the 
additional parameter are as follows: 

(A"+IBA"+ 1), (A ~+'BA riB), (BA"BA ~+') and (BA ~BA nB) 
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There are four leading spin-flips [cf. (17)1: 

+ + ( 9 0 + ( 9 0 . . .  + ( 9 ( 9 + ( 9 + ( 9 ( 9 + ( 9 - - .  ( 9 + ( 9 ( 9 + +  
(ac .  = 0) 

+ + ( 9 e + ( 9 ( 9 . . -  +(9(9+(9+(3+(9@. . .  + 0 ( 9 + ( 9 -  
(2Xch = 2j" T) 

- ( 9 + - ( 9 + ( 9 , - .  (9 + ( 9 + ( 9 + ( 9 ( 9 + O , - .  (9 + ( 9 ( 9 + +  
( A .  = 2j- T) 

- ( 9 + @ @ + ( 9 . . -  (9 +(9+(9+(9+(9 (9 . . .  + ( 9 ( 9 + ( 9 -  
(kch = 4j.  T) 

The relevant q term of the reduced free energy 

f = @ + ~q (19) 

is again negative, as in Eq. (18). This ensures the stability of the boundary 
<A'+'B)-(A'B). 

We often shall refer to Eq. (19)--more concretely, to the second term 
on the right-hand side of Eq. (19), which for brevity will be called the q 
term. 

We must also control the stability of the boundary (A)-(AB). The 
probabilities, containing the additional parameter, can be written by using 
the convenient notation 

(AAA), (AAB), (BAA), (BAB) 
The main competition is caused by the following five-spin-flips: 

- D + O + @ O + @ -  

- @ + |  

+ + ( t ) O + ( 9 0 + ( 9  

- @ + ( 9 ( 9 + ( 9 ( 9 + +  

[~c,, = 4j . v, ( AAA ) ] 

[ac. = 2j r , ( ~ A A ) ]  

[Ach=2j  " V, (AAB)I 

where the in-chain excitation energies and the corresponding probabilities 
are quoted in brackets. Here the general expression for the reduced free 
energy (19) is also correct and includes the coefficient ct, proportional to the 
positive multiplier ( 2 -  2z). Hence the boundary splits according to the 
scheme 

(A)-(A2B)-(AB) 

To determine conditions for the instability of the boundary {A)-  
{A2B) we employ our usual approach. The main "connected" spin-flips 
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contain seven individual flipped spins: 

@ + O @ + O + ~ G +  

@ + O + @ O + ~ O +  

+ + @ O + |  

- @ + G @ + O ~ + O ~ + +  

15 

[ Ach = 4j" T, (AAAA) 1 

[ A~h = 2j . T, ( BAAA ) ] 

[ A~h = 2j" T, (AAAB)  ] 

The coefficient ~ [see Eq. (19)] is proportional here to (2 - 3z). Hence, the 
splitting of the boundary ( A ) - ( A 2 B )  takes place only at z < 2/3. We 
recall also that z > 1/2. As soon as one has 2/3 < z < 1 the boundary 
becomes stable. The boundary between the phases (A)  and (A ~B ) is stable 
at any z. 

It is worthwhile to cite the resulting phase transitions along the original 
boundary F-(2.1).  In a "weak" magnetic field (h < J0) the single splitting 
takes place in the vicinity of the point C (see Fig. 1): 

F - ( 2 J )  (z < 1/2) 

F-(3.T)-(2.~) (z > 1/2) 

A region of a "strong" magnetic field (h > J0) exhibits the more compli- 

( 5,Z (2, 7) 3> 

/ ~ < 5 .  T. (2, 7) 2) 

F " ~ 7 >  

T 

Fig. 5. Phase diagram in the (~, T) plane in the vicinity of the C point (Fig. 1). 
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cated sequence of phase transitions: 

F-(2 .1)  
- 2  - 3  

F-(3.1)-(3.1.2.1)-(3.1.(2.1)  )-~3.T.(2.1) ) - (2 .1)  
- 2  

F-(3.1)-(3 .1 .2 .1)-(3 .1 .  (2 .1) ) - (2 .1)  

These are qualitatively shown in Fig. 5. 

(z < 1/2)  

(1 /2  < z < 2 /3  / 

(2 /3  < z < 1) 

5. THE BOUNDARY (2.1)-AF 

5.1. Low-Order Expansion 

The stability of this boundary has been investigated in a short note. (12~ 
Here we present the technicalities of calculations. 

The equation of this boundary is as follows: 

J l  = h + 2J 2 (J2 > 0) 

The basic parameter can conveniently be introduced using the following 
relationships: 

( + + - ) = ( - + + ) = p ,  ( + - + ) = ( I - p ) / 2 ,  ( - + - ) = ( 1 - 3 p ) / 2  

There are two distinct possibilities. The first one corresponds to the inequal- 
ity Jo > J2. Then the single-spin-flips are most-favored ones: 

+ + (~ + + (Ach = 6J2)  

+ + ~ + - and - + O + + (Ach = 4J2) 

- + G + -  (Ach=2J2) 

As usual, the free-energy expansion in the vicinity of the boundary has a 
form of Eq. (19) with 

o~ = - Two(1 - w2) 2 < 0 

where w2= e x p ( - 2 J 2 / T  ). The boundary ( 2 . 1 ) - A F  (or (2J ) - (1 .T) )  is 
stable. 

The reverse inequality (J2 > J0) leads to the different most-favored 
spin-flips: 

+ @ O + -  and - + 8 @ +  

Their in-chain excitation energies vanish. The coefficient a in the free- 
energy expansion is positive, being 

o~ = 2 Tw~ 



Low-Temperature Analysis of ANNNI Model 17 

This circumstance can be understood in another manner�9 The main contri- 
bution to the q term of the reduced free energy is caused by the off- 
diagonal spin-flip configurations with the probabilities ( A C )  and ( C A ) ,  

where the "particle" C is defined below: 

C = + -  

So, the first step of the boundary (2.T)-(1.T) splitting is such that 

~2.T)-(2.1.1.1)-(I.T) 

o r  

( A ) - ( A C ) - ( C )  

5.2. Resulting Splitting 

The degenerate structure, constructed by using the particles A and C 
as bricks, can be written in a general form: 

. . . A " 'Cm'A "2C'Vg/2 �9 . . 

As shown in Section 5.1 there exists a region of the stability of the 
dimerized phase ( A C )  with all of n's and m's being equal to unity. A 
further analysis has to be made along the coexistive curves ( A ) - ( A C )  and 
(A C ) - ( C ) .  The general forms of degenerate structures along these bound- 
aries can be represented, respectively, by the following sequences: 

and 

�9 . . A " ' C A n 2 C  . . . 

. � 9 1 4 9  

Concerning the stability of the boundaries considered, two observations can 
be made: 

1. The boundary (A)- (A k-IC) splits with an appearance of a strip 
of the intermediate phase ( A  k c ) .  

2. The boundary ( A  k C ) - ( A k - I C )  is stable�9 
They can be proven as follows: 
The basic parameter p along the boundary ( A ) - ( A  k - i C )  can conve- 

niently be represented as 

p = (A 

In the p space there are two extremal points or vertices corresponding to 
the stable phases (A) and ( A ~ - I C ) .  The degeneracy parameter q is 
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defined by the following probabilities: 

(A k+l) = q 

(A  kC ) = ( C A  = p - q (20)  

= - (A C) 

= [1 - (3k + 2)p + ( 3 k -  1)q] / (3k-  1) 

It is worthwhile to explain the origin of the equality 

(Ak-IC) = (1 -- 3 e ) / ( 3 k -  1) (21) 

Obviously the basic parameter p is equal to 1/I A and to 1/[(k - 1)l A + lc] 
in the case of "pure" structures (A)  and (Ak-IC),  respectively. Here 
l A = 3 and l c = 2 are the periods of phases (A)  and (C) .  These extremal 
values of p directly lead to Eq. (21). 

To establish a relevant q term of the free-energy expansion [see Eq. 
(19)] we must consider only those spin-flips, which are connected with a 
new parameter q and whose Boltzmann weights are largest among them. 
These leading spin-flips correspond to the vanishing of their in-chain 
excitation energies. This vanishing is consistent with two possible spin-flip 
configurations within particles A 

A 1 = • + Q  and A2= - t -~O 

The flip of negative spins is essential, otherwise the following three-spin 
sequence may appear: @ - ~ ,  which corresponds to too high an excitation 
energy. The possible in-chain orderings of elements A 1 and A 2 are deter- 
mined by three allowed transitions between the neighboring elements: 

A1--> A1, Az--> A2, A2-~ A 1 

whereas A~-~ A2 is forbidden, because this transition produces the excited 
spin sequence + + + having too high an in-chain energy. 

Let us present now the "connected" spin-flip sequences, having van- 
ishing in-chain excitation energy, which induce a new parameter q and 
contain the minimal number of the individual spin-flips: 

+ ~ O A 2 A 2 " ' ' A I +  - and - + O A I A I - . . A I @ +  (22) 

Consequently, among all the relevant configurations these two have the 
lowest excitation energy. 

If at least one C-particle is included in the sequence, consisting of 
A-particles, then the indirect transition A~--~ A 2 becomes possible. Indeed, 
spin-flips within C-particle of the form 

 =Ge 
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usually lead to transitions A1---~C and C---~A 2. Therefore, the indirect 
C-mediated transitions A1--> C ~ A  2 become possible. 

The minimal number of spin-flips in a relevant sequence with a single 
"impurity" (C-particle) corresponds to the following combination: 

- -  + O A  1 . . . A I C A  2 . . . A 1 + - (23) 

These sequences must be taken into account to find the stability condition 
of the boundary (A  k-  ~C) - (A  kC). The relevant probabilities including the 
additional parameter q, can be written 

(A kCA k) = q 

(A kCA k - 1  C ) ~ (CA ~- 1CA k) = p _ q (24) 

( C A k - I C A ~ - 1 C )  = ( C A k - I C )  - p + q 

where the basic parameter p = (A k-  1CA k-  l) and 

( C A k - ' c )  = [1 - (3k + 2 ) p ] / ( 3 k -  1) 

In the leading spin-flips (22) the end-point particles are different. This 
ensures that the main contribution into the q-term of the reduced free 
energy comes from the off-diagonal probabilities (A*C) and (CA k). The 
boundary ( A ) - ( A k - I c )  splits according to the scheme ( A ) - ( A k C )  - 
(A k- IC)  ' In the vicinity of the boundary between (A *-1C) and (A *C) 
phases the diagonal probability (CA k - I c A k - I c )  is significant [compare 
the labeling of the relevant probabilities (24) and spin-flip configurations 
(23)]. In this case the boundary remains stable against all highest orders of 
the free-energy expansion. 

As usual, in both these cases the reduced free energy has the general 
form (19). The coefficients c~ are equal to 2Tw~ k and - T w  4k-1, respec- 
tively. 

A brief consideration allows one to establish the sequence of phase 
transitions as 

( C ) - ( A C ) - ( A 2 C )  . . . . .  ( A n C )  . . . . .  ( A )  

or in an alternative notation 

( 1.1>-(2.1.1.1 ) - ( (2 . f )  2.1.1> . . . . .  {(2.1) n. 1.T) . . . . .  (2.T) 

and 

(15>-(25> ( 4  < Jo) 

These cascades are illustrated in Fig. 6. 

(J2 > Jo) 
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/74+e +)..+> 
' , / / 5 c 2  t 7 . .  

<e T> /'.~"<2 + ~ ~> 

- (  > 

v l , r  4 

Fig. 6. Splitting of the boundary AF-{2.1). There is a multiphase point, M. 

6.1. The Boundary < 2 . T > - { 2 . 2 >  

The equation of this line at T = 0 has the form 

2J2 = J 1  -[- 2h (J1 > 0) 

There exist five nonzero probabilities (D = 3) 

( +  - - )  = ( -  - + )  = p  

( +  + - )  = ( -  + + )  = (1 -p)/3 
( +  - + )  = (1 - 4p) /3  

The peculiarity of this boundary consists in appearance of the new parame- 
ter q for D = 6: 

( - - + + - - ) = q  

( -  - + + - + )  = ( +  - + + - - )  = p -  q ( 2 5 )  

( +  - + + - + )  = (1 - 7p + 3q) /3  

The vertices in the (p, q)-space, which can also be labeled by the conven- 
tional notation for the corresponding phases, are 

(0,0) {2.T} 

(1/4,  1/4) (2.2> 

(1 /7 ,0)  <2.2.2.1> 
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To the first order in the free-energy expansion there is no splitting, because 
the single-spin-flips merely generate an extension of the probability space 
to D = 5. Therefore, they may only shift the boundary without any split- 
ting. However, this line is not stable in the next order in the free-energy 
expansion. The second order is connected with the two double-spin-flips, 
whose excitation energy vanishes, namely, 

+ - @ + O -  and - G + @ - +  

These spin-flips yield the negative q term in the reduced free energy, 
consequently the boundary (2.T)-(2.2) is unstable. The intermediate phase 
here is (2.2.2.1). 

To extend our analysis, we make use of the simplified notations 

E = + + - - ,  A = + + -  

Firstly, we consider the boundary ~2.T)-~2.2.2.1), or ~A)-~EA). The 
basic parameter can be defined by the equation 

p = (AA) 

The new parameter q is connected with four probabilities (AAA), (EAA), 
(AAE), and (EAE). The significant three- and four-spin-flips are presented 
below with the corresponding probabilities and the in-chain excitation 
energies: 

+ - @ + O + G - +  (AAA) 

- 0 + 0 0 + ~ - +  (EAA) 

+ - ~ + 0 ~ + 0 -  (AAE) 

The contributions to the q term of the three- and four-spin-flips become 
comparable to each other, if J! = 2J  0. In the region J! < 2J 0 the boundary 
is stable. At J! > 2J 0 the boundary splits into the following sequence: 

( EA )-(  EA Z)-( A ) 

Along the other boundary (E)- (EA)  three-spin-flips are not possible 
and four-spin-flips, 

+ - @ + e - o + |  and - O + r  

correspond to the off-diagonal probabilities (AEE) and (EEA). This en- 
sures the instability and splitting of this boundary with an appearance of 
the intermediate phase (E2A). In contrast to the case of the boundary 
(EA)-(A)  the last splitting does not depend on the relationship between 
J1 and J0. 
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6.2. The Boundary ~2.T~-~2.2~ (Continued) 

After introducing the A and E particles a general approach in the 
spirit of Section 5.2 can be accomplished. Firstly, the following spin-flips 
within particles A and E are consistent with the vanishing of the in-chain 
excitation energy: 

A I , A 2 , A 3 =  O G G  and E 1= G + O - ,  E 2= + G - O  

E3= + G O 0 ,  E4= G G O G  

The elements A3,E3,E 4 will not be taken into account since the extra 
flipped spin yields an extra small Boltzmann factor. Transitions from one 
element to another, like 

, 

are allowed. 
The arguments of Section 6.1 lead to the splitting 

( E ) - ( E A ) - ( A )  

Along the first new boundary any degenerate structures include A particles, 
as "impurities," surrounded by E particles. In principle, the existence of the 
following periodic structure does not lead to a direct contradiction along 
the boundary ~E)- (EA) :  

(G)  = ~E"'AE"2A . . .  E"~A) 

Suppose this phase and 

< G,) = ( E"' + lAE"M . . .  E"kA ) = < EG ) 

have a common boundary. The probabilities 

(Ed_,E), (EdA), (AdE),  and (AGA) (26) 

where G = GE "l, describe the competition along the boundary. As a result 
of such a competition there may appear a new intermediate phase 

Instead of two competitive phases 

( a )  and (EG) 

one can consider the phases ( G )  and (EG2). Then the role of d is played 
by the following sequence: 

d ' =  a 2 e ' ,  = a d  

and so on. Therefore, we can consider the probabilities (26) as competitive 
probabilities of a general case. 

To compare the labelings of the significant spin-flips with those of 
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their probabilities, we rewrite the set (26) in more detail as 

(E(~E) = ( -  - d + + - - )  

( E & )  = ( - - d +  + - + )  
(26') 

(AdE)  = ( + - O +  + - - )  

( A G A ) = ( + - d +  + - - + )  

The "connected" sequences of flipped spins which correspond to vanishing 
of the in-chain excitation energies of the resulting spin-sequences, which 
generate the probabilities (26') and which include the minimal number of 
individual spin-flips, are given by 

_ GE~,A2E~2A2  . . . ,,, n, E 2 A 2 E  2 -1- G - + 
(27) 

+ - E ~ A , E ~ 2 A ,  . . .  E~*A,E~" �9 + G - 

Both the probabilities ( E G A )  and ( A C E )  of these spin-flips are off- 
diagonal. Hence the striped intermediate phase ( E G 2 )  exists in between 
the phases (G} and ( E G ) .  

The analogous considerations apply to the boundary (A)-(EA). The 
counterparts of (27) and (26) for this boundary are now 

-- OA2m'EiA~n2E2 . . . A ~ E 2 A ~  n' + m - + 
(28) 

+ - A ~"EIA ~'2E l . . .  A ~'kE,A ~" ED + @ - 

and 

where 

CA) "- (A = ( + - a +  + - + )  

(A = ( + - C +  + - - )  

( E ~ A ) = ( - - ~ +  + - + )  

( E G E ) = ( - - G +  + - - )  

(29) 

= GA m, = A mlEA m2E . . . A m~EA m, 

The probabilities of the spin-flip sequences (28) are off-diagonal ones 
again. This circumstance leads to a splitting of any boundary generated 
from the original boundary ( A ) - ( E A ) .  

This splitting picture is an unexpected one for the ANNNI model. The 
total scheme of the branching is as follows. The first step corresponds to the 
splitting 

( A ) - ( E )  

/ \  
( A ) - ( A E ) - ( E )  
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the second step corresponds to 

( A ) - - ( A E )  - - ( E )  

/ \  / \  
( A ) - ( A 2 E ) - ( A E ) - ( A E 2 ) - ( E ) ,  etc. 

Any two phases (,4) and (/~), which become neighboring in this branch- 
ing hierarchy, create the intermediate phase ( A E )  in between them. This 
sequence is well known as a "complete devil's staircase," which has been 
theoretically observed in the lattice gas model with a long-range interaction 
(see Refs. 17-19). 

Our considerations hold at low enough temperature provided J1 > 2J0. 
The reverse inequality Jl < 2J0 leads to the destruction of this curious 
sequence of phase transitions. Indeed, at Jl = 2J0 the total excitation 
energy of any spin-flip sequence formed from sequences (27) by replacing 
one of the "normal" transitions A 1 ~ E1 by the "wrong" one, A ~ -~ E2, 
would be identical and equal to the excitation energy of the original 
sequences (27). There would exist k new spin-flips, like 

. . . .  + A z E  ~' + @ - + (30) + - E ~ t A I  . . .  EI~JA1E2 y IA 2 . . .  

This competition occurs along the original boundary ( E A ) - ( E ) .  Along 
the other boundary ( E A ) - ( A )  one more "wrong" transition A l-->A 2 

becomes allowed. The relevant spin-flips, competing with those of (28), 
look like 

+ - A ~ ' E  1 . . .  A~A2mj-mE2 . . .  E2A~ '~ + 0 - + (31) 

The total number of sequences like (31) is equal to 
k 

rnj + m 1 - 1 
j = t  

Note that the probabilities of the relevant spin-flips from the sets (30) 
and (31) are usually diagonal. Hence, almost all of the possible boundaries 
in the region J1 < 2J0 become stable. There exists one exception to the 
general rule, because the spin-flips 

+ - E ~ + G -  and - O E ~ +  O - +  

correspond to off-diagonal probabilities and belong to the sets (27) and (30) 
simultaneously. Consequently, the conventional approach leads first to the 
splitting of the boundary ( E ) - ( A ) ,  then the boundary ( E ) - ( E A )  splits, 
etc. The resulting cascade looks like 

( A ) - ( E A ) - ( E  214) . . . . .  ( E n A )  . . . . .  ( E )  (32) 

The crossover of the two regimes when 

J1 -- 2J0~ T 
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Fig. 7. Schematic representation of "complete devil's staircase" branching. It takes place in 
the crossover region along the boundary (2.T)-(2.2). Any boundary (A)-(B) from this 
branching family splits at some triple point generating two new boundaries. Inset: position of 
the crossover region (encircled) in the (Jr, J2) plane. 

contains an infinite number of triple points. To find them we must compare 
the contributions of configurations (27) and (30) [or (28) and (31)] to the 
free-energy expansion. They differ by the factor 

 exp('  
where K is the total number of representatives of a set (30) [or (31)]. Hence, 
the simple cascade of phase transitions (32) splits inhomogeneously into 
the "complete devil's staircase." This situation is depicted qualitatively in 
Fig. 7. 

7. THE BOUNDARY F-~2.2) 

7.1. Low Orders of the Free-Energy Expansion 

The splitting pattern of this boundary is the most complicated one 
among those considered. The boundary equation at the zero temperature is 

2J  2 = IJ]] + 2h (J] < 0) (33) 

The basic parameter is connected with the probabilities 

(+  + + )  = p ,  ( +  + - )  = ( +  - - )  = ( -  - + )  = ( -  + + )  = (1 -p ) /4  
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As usual, to take into consideration a contribution of single-spin-flips 
into the reduced free energy, we must extend the probability space up to 
D = 5. According to this extension we need to introduce two more parame- 
ters 

q = ( + + + + )  and r - - ( + + + + + )  

The relevant, energetically favored single-spin-flips can easily be found; 
they are 

+ + G + + (A = [J1] + 2J0) (34) 

+ + ~3 - - and - - @ + + (A = 2h + 2J0) (35) 

Their total energies are quoted in parentheses. There exist also the double- 
spin-flips 

+ + G - O  and O - ~ + +  (A=4J0)  
(36) 

+ + @ ~ +  + (A = 4J0) 

whose in-chain excitation energies vanish. Comparing the excitation ener- 
gies (34)-(36) we recognize three distinct possibilities: 

IJ11 < 2h, IJIL < 2J0 (34') 

2h < IJll, h < J0 (353 

2J0 < IJ11, J0 < h (36') 

If the inequalities (34') hold, the significant spin-flips (34) yield the 
following expression of the reduced free energy: 

f = ~p - Twowlr 

where w I = exp(- IJ l I /T) .  The probability space (p,q,r) contains four 
vertices. Two of them, (0,0,0) and (1, 1, 1), correspond to the phases (2.2} 
and F, respectively. Only they are stable in this case. Hence, condition (34') 
leaves the boundary F-(2.2} stable. 

In contrast, spin-flips (35) lead to the reduced free energy 

f =  ~p + 2Twowhq (37) 

which has a positive q term. Equation (37) can be reproduced using the 
probability of the significant spin-flips (35) which are 

( + + + - - ) = p - q  

The nature of the free energy (37) implies the splitting of the boundary in 
question. The new phase (3.?.) appears in between F -  and (2.2)-phases. 
Along the boundary F-(3 .2)  some of the periodic phases, for example, 
(4.2), belong to the family of degenerate structures. A further analysis of 
the low-temperature expansion shows that the boundary F-(3 .2)  is stable 
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owing to the spin-flips: 

+ + @ + +  or + + O G + +  
In the region (36') the original boundary F-(2.2} splits, thus generat- 

ing the intermediate phase (3.2). One of the new boundaries, namely, 
F-(3.2), is also stable as in the case considered before. 

Now we concentrate our attention on the analysis of the splitting of 
the boundary ~2.2}-~3.2}. As above, introduce an abbreviated notation: 

H = + + + - -  
The additional parameter along the boundary (E}-(H} is connected with 
the following probabilities: 

(EE),  (EH), (HE), (HH)  

The significant spin-flips, which generate the additional parameter include 
three and four individual spin-flips: 

+ + ( 9 - @ + @ -  and - O + 0 - 0 + +  ( A = 2 h + 6 J 0 )  

+ + 0 - 0 + 0 - 0  and 0 - 0 + 0 - ( 9 + +  (A=SJo) 

The probabilities of these pairs of spin-flips are both off-diagonal: (HE) 
and (EH). The boundary ( E } - ( H }  splits in both regions (35') and (36'). 

A more complicated situation arises along the new boundary (EH}- 
(H}. Here the additional parameter is connected with probabilities of the 
form 

( t /HH),  (EHH),  (HHE),  (EHE) 

The competitive spin-flips, which generate the additional degeneracy pa- 
rameter, are written 

+ + 0 - 0 + 0 + 0 - 0 + +  (A = 10Jo + IJll) 

- - 0 + 0 - ( 9 0 + 0 - 0 + +  1 (A = 12Jo + 4h) 
++o-e+oo-o+o-- j  
0-0+000o+0-0++} (A = 16Jo) 
++0-@+00@@+0-0 

Comparing the total excitation energies we find that if IJll < 3]0 + 4h and 
IJ,I < 6J0 the most significant spin-flip corresponds to the diagonal proba- 
bility (HHH) and, consequently, the boundary (EH}-(H} is stable. In 
contrast, the probabilities of other pairs of spin-flips are off-diagonal. So, 
in the region defined by either of inequalities ]Jl] > 2J0+ 4h and IJ~l 
> 6J o, the boundary (EH}-(H} splits according to the scheme 

( EH}-( EH2}-( H} 
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O (17o,I ' o> 
m ~  a:  

Fig. 8. Regions of different types of phase transition along the original boundary F-{2.2)  
are shown at fixed coupling constant IJl] (with x = 2Jo,y = 2h). 

To consider a splitting of the boundary (E) -{EH)  we need to take 
into account the significant spin-flips which generate the additional param- 
eter corresponding to this boundary, namely, 

+ + @ - @ + G - @ + ~ - - }  (A= 10Jo+ 2h ) 
- - @ + @ - @ + @ - @ + +  

+ + 0 - @ + @ - 0 - . I . - @ - 0 ]  (A= 12Jo) 
@ - @ + @ - ( 9 + @ - G + +  .) 

In spite of the spin-flips of different kinds presented above, these corre- 
spond to the same off-diagonal probabilities (EEH) and (HEE). Thus, the 
boundary splits everywhere, excluding the region (34'). Figure 8 displays 
the various regions of splitting of the original boundary. 

7.2. The Boundary F- (2 .2)  lor 2h < IJ~l, h < Jo 

Following the approach of Section 6.2 we introduce the elementary 
spin-flip sequences constructed from the original "particles" E and H. 
According to the relationships (35') between the coupling constants and the 
magnitude of the magnetic field the most significant spin-flips must 
include the following elements: 

E 1, E2, H l =  ( 9 @ + @ -  H 2= + G @ - @  (38) 

The excitation energies of elements E and H (A e and AH) satisfy the 
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inequalities 

A E /> 4Jo, 2x~/ >/6J o + 2h 

These inequalities saturate, if the elements E and H are situated according 
to the ordering, defined by transition rules 

H2 

First, consider the boundary ( E ) - ( E H ) .  Along this boundary any 
possible degenerate periodic configuration ( G )  can be written as 

. . .  E ' q - I E n 2 H . . .  E n k H E n ,  . .  

or (39) 
= E kH> 

As explained in Section 6.2 we have to find the most significant spin-flips 
which generate the additional parameter along the boundary ( E G ) - ( G ) .  

They look like 

+ + ~ - O E ~ H  2 . . .  ~k "' E2 H 2 E 2  + @ -  _ 
(40) 

- - �9 + O - E ~ ' H  1 . . . E ~ H I E ~  ~ �9 + + 

The probabilities of spin-flips (40) have the off-diagonal form 

( H G E )  and (EGH),  where G = G E  ~' 

Hence the boundary ( E G ) - ( G )  splits. 
Arguments analogous to those presented in Section 6.2 imply the 

existence of a "complete devil's staircase" sequence of phase transitions. 
The above considerations hold if [Jl] > 2J0 + 4h (region II in Fig. 8). 

The reverse inequality leads to significant spin-flips of a new kind, in 
which the indirect H0-mediated transition 

E2--> H0-~ E l 

becomes allowed. Here the elementary sequence H o is + @ + O - .  The 
excitation energy of the element H 0 in the allowed sequence is 4J  o + [J~]. 
One representative of the set of most significant spin-flips is 

+ + �9 - ( g E y ' H  2 . . .  E ~ H o E ~ ; + ' H 1 . . .  H i E  ~' @ + + (41) 

The total number of spin-flips in (41) is lower by one unit than that in (40) 
and the difference of the total excitation energies of (41) and (40) is equal 
to 

IJl] - (2J0 + 4h) 

Note that the sequences (41) correspond to the diagonal probability 
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(H(~I- I ) .  Therefore almost all of the possible boundaries in the region 
IJll < 2J 0 + 4h become stable, except the simple cascade of phase transi- 
tions written below: 

( H ) - ( H E ) - ( H E  2 ) _ . . .  _ ( H E  ~  . .  - ( E )  

These results resemble those obtained in Section 6.2. 
This analogy can be made complete after the boundary ( E H ) - ( H )  

stability is investigated. Instead of (39) we must consider the other sequence 

. . .  H m ' E H m 2 E . . .  H m k e H r r q . . .  (42) 

For reference we quote all the relevant spin-flips in the corresponding 
regions. Two of the most significant ones at IJj] > 2J 0 + 4h are 

+ + (9 -- 0 H~n'E2 . �9 �9 H ~ k E 2 H ~  ' + (9 -- --  
(43) 

- - (9 + (9 - H ~ ' E ~ . . .  H ~ ' k E I H ~  '~ (9 + + 

The set of (~y= lmj + m 1 - 1) different sequences of spin-flips arises 
owing to the energetically favored "impurity" H 0 at IJl[ < 2J o + 4h. One of 
these sequences is 

4- 4- 4- -- - - H ~ I E 2  Klml-mLl  L l m - l p  E I H ~  ~ + + + (44) 
�9 �9 " * ' 2  * ' 0 " ' 1  ~ 1  " " " 

There are off-diagonal probabilities of spin-flips (43) and a diagonal one of 
the set o f  spin-flips (44). 

We can reformulate the conclusion of Section 6.2 slightly changing the 
symbols and inequalities, as follows 

If ]Jl] < 2J 0 + 4h (region III in Fig. 8), there exists only one infinite 
cascade of phase transitions, namely 

( H ) - ( E H ) - ( E 2 ~ )  - . . .  - ( E ~ H )  - . . .  - ( E )  

which splits in the region IJl[ > 2J 0 + 4h generating a "complete devil's 
staircase" sequence of phase transitions with the phases ( E )  and ( H )  as 
limits. As before, the crossover region, IJ~]- 2J0- 4 h ~ T ,  contains an 
infinite number of triple points. 

7.3. The Boundary F-(2 .2 )  for J0 < h, 2J 0 < ]Jll 

In this section we employ the ideas of Sections 6.2 and 7.2 to establish 
the sequence of the phase transitions. We shall not refer again to the results 
and conclusions obtained in those sections�9 

If the coupling constants obey IJ~l > 6Jo,  only the following elemen- 
tary spin-flips within E and H particles are allowed: 

E l,  E 2, E 5= (9+(9(9  

H l , H 4 =  + ( 9 ( 9 ( 9 ( 9 ,  / / 3 =  ( 9 ( 9 + ( 9 0  
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These are consistent with the vanishing of an in-chain excitation energy of 
a whole spin-flip sequence. The allowed transitions from one element to 
another are 

El ---> E2--~ E2 H 3 ~ H3 (45) 

HI ' H4 ' H4 H4 

Generally the boundary ( E ) - ( E H )  may split creating a set of periodic 
structures, such as 

�9 . . E n ~ H E ~ 2 H . . .  E " ~ H E ' , . . .  

or (46) 

( G )  = ( E n ' H E n 2 H .  . . En~H) 

For the sake of simplicity consider the possible boundary ( G ) - ( E G ) .  In 
this case the most significant spin-flips with vanishing in-chain excitation 
energy look like 

+ + (~D - OE~IH4E~zH4 . . . nk n, E 2 H 4 E  2 + (~ - 0 (47) 

To this one adds the inverted sequence�9 These spin-flips correspond to the 
off-diagonal probabilities ( H G E )  and ( E G H ) ,  where G = GE n'. In the 
region ]J~[ > 6J0, marked IV in Fig. 8, there exists a "complete devil's 
staircase" with the phases ( E )  and ( E H )  as original ones. 

Now consider the boundary ( E H ) - ( H )  in the same region of cou- 
pling constants. The basic spin-flips along this original boundary are 

+ + ~ 3 - O H 4 +  ~ - O  

and 

|  

They have the off-diagonal probabilities ( H H E )  and ( E H H ) ,  hence the 
boundary ( E H ) - ( H )  splits. 

Two new boundaries appear, namely, ( E H ) - ( E H  2) and ( E H 2 )  - 

( H ) .  The latter is stable. This can easily be checked, because here the most 
significant spin-flip has the form 

+ + ~ -  O H 4 H  1 @ + + (48) 

Its probability is diagonal, namely, ( H H Z H ) .  

Along the boundary ( E H ) - ( E H  2) the basic spin-flips can be written 
using the transitional rules (45) as 

+ + @ - @ H4EaH 4+  ~ - 0 (49) 
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and 

( 9 -  (9 + Q(g  H1EsHl ~ + +  

Obviously the probabilities of (49) are both off-diagonal: (HGE)  and 
(EGH),  where G = HEH.  The boundary splits and we must elucidate the 
further behavior of the new pair of boundaries: <EH>-<EHEH2> and 
<EH2) -<EHEH2) .  Along the latter the most significant spin-flips include 
two sequential H elements, as in the case (48), namely, 

+ + �9 -- OH4E2H4HIEsH 1G + + (50) 

The probability of this is diagonal, thus making the boundary stable. 
There also exist spin-flips with dimerized sequences of E and H 

elements, as in the sequence (49) which is dissimilar to (50). These be- 
come the basic ones along the boundaries of a kind ( ( E H ) n E H a ) -  
( ( E H )  n- 1EH2) and have the form 

+ + (~D - G H 4 E 2 H 4 E 2 H  4 . . . H4E2H 4 + ~3 - 0 

and (51) 

0 - � 9  + O Q H 1 E s H 1 E s H  1 . . .  H1EsH 1 �9 + + 

The probabilities of (51) are both off-diagonal. Hence the conclusion: the 
boundary ( E H ) - ( H )  generates an infinite cascade of phase transitions: 

( H ) _ (  E H  2 ) _ (  E H  2 E H  ) _  " . . _ (  E H  2( E H  ) n ) _  . , . - (  E H  ) 

In the region IJll < 6J0 the boundary ( E ) - ( H )  can be easily investi- 
gated by considering the indirect H0-mediated transition 

E2--> H0-+ E 1 

which leads, as in Section 7.2, to the following cascade of the phase 
transitions: 

(/-/)-(eH>-(E2~)-... -(E~/-/)-... -(E) 
The region [Jll < 6J0 is marked V in Fig. 8. Finally, the crossover region 
]J l ] -  6 J o l T  contains an infinite number of triple points, as depicted in 
Fig. 7. 

8. C O N C L U S I O N  

The low-temperature expansion for free energy has been employed to 
construct the phase diagram of the ANNNI model in an external magnetic 
field. The phase diagram pattern found is much more complicated than 
that found in Refs. 8-9 for the case of zero magnetic field. The principal 
difference is in the existence of several "complete devil's staircase" se- 
quences of phase transitions. This is, indeed, surprising for the conventional 
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ANNNI model. It is worth emphasizing that Smith and Yeomans (~3) have 
investigated the boundary F-(2.2).  They obtained the infinite cascade of 
phase transitions, coinciding in the regions III and V (Fig. 8) with that 
found in the present work. If coupling constants map into areas II and IV 
(Fig. 8) a more accurate consideration of excitations above the degenerate 
ground state must be taken into account (see Sections 7.1-7.3). 

It would be interesting to find the low-temperature crossover regime, 
connecting the behavior of the ANNNI model in zero to that in the finite 
magnetic field. The previous analysis (11) of the crossover regime in the 
magnetic field refers only to the highly anisotropic ANNNI model with 
Jo>> J i ,J2 .  

Another interesting problem, briefly considered in the present paper, is 
the temperature crossover, leading to sequences of bifurcations, as depicted 
qualitatively in Fig. 7. 
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APPENDIX 

Here we exhibit several in-chain spin sequences and configurations of 
flipped spins used throughout the paper: 

A = + + - ,  B = + + + - ,  C = + -  
E = + + - - ,  H = + + + - -  

A l = ( ~ + O ,  A2= +1~O,  A3= O ( ~ O ,  C =  G O  

E~ = ~ + O - ,  E2= + G - G ,  E3= + 0 0 0  

E4= @ @ o e ,  E s =  @ + O O  

Ho=  + G + G - ,  H ~ = @ @ + O - ,  H2=  + 0 0 - 0  

n 3 =  ( D ( ~ + O O ,  / ]4= + G G G O  
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